inorganic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

The iron phosphate K₃Fe₅(PO₄)₆

Besma Lajmi,* Mourad Hidouri and Mongi Ben Amara

Département de Chimie, Faculté des Sciences, 5000 Monastir, Tunisia Correspondence e-mail: besma. lajmi@fsm.rnu.tn

Received 9 July 2002 Accepted 23 August 2002 Online 22 October 2002

The crystal structure of tripotassium pentairon hexaphosphate has been determined by single-crystal X-ray diffraction. The structure contains one Fe atom on a center of symmetry, one K, two Fe and two P atoms on twofold axes, and one Fe, two P and one K atom in general positions. The $K_3Fe_5(PO_4)_6$ structure consists of a complex three-dimensional framework of corner-sharing between iron polyhedra, and corner- and edge-sharing between PO₄ tetrahedra and iron polyhedra (FeO₅ and FeO₆). This linkage between iron and phosphorus forms intersecting channels containing the K atoms.

Comment

Iron phosphates generate considerable interest not only because of their magnetic properties, due to the great number of possible different cation arrangements, but also because of their potential practical applications, including corrosion inhibition (Meisel et al., 1983), passivation of metal surfaces (Attali et al., 1980) and heterogeneous catalysis (Moffat, 1978). These materials offer a considerable number of complex and versatile network structures due to the ability of iron to be in both the +2 and +3 oxidation states, and to adopt various coordination environments. In the monophosphates, iron(III) coordinates, in most cases, to six O atoms and rarely to five O atoms (Belkhiria et al., 1998; Pintard-Scrépel et al., 1978; Andrew-Allen & Robinson, 1988). It is four-coordinated in a few cases, such as in FePO₄ (Ng & Calvo, 1975). Moreover, it can exhibit two different coordination modes in the same structure, such as in $K_3Fe_2(PO_4)_3$ (Pintard-Scrépel *et al.*, 1983) and Cs7Fe7(PO4)8O2 (Andrew-Allen & Robinson, 1988), in which iron(III) adopts five- and six-coordination. The potassium iron phosphate K₃Fe₅(PO₄)₆, reported in this paper, falls into the latter category of compounds.

Fig. 1 illustrates the complete crystal structure of $K_3Fe_5(PO_4)_6$ projected along the [100] direction. There are four crystallographically distinct Fe atoms in this structure. Fe1 is located on a center of symmetry, Fe2 and Fe3 lie on twofold axes and Fe4 is located in a general position. The Fe atoms are both five- and six-coordinated. Atoms P1, P2 and K2 lie on twofold axes, while atoms P3, P4 and K1 are in general positions. The $K_3Fe_5(PO_4)_6$ structure consists of a three-dimensional complex framework constructed of either

Figure 1 A projection of the structural network of $K_3Fe_5(PO_4)_6$ along the [100] direction.

iron polyhedra connected to each other by corner-linkage or phosphate tetrahedra connected via corner- and edge-sharing. The structure can be easily described as the association of two building blocks. The first gathers Fe1, Fe2 and Fe3 octahedra, P1, P2 and P3 tetrahedra, and K atoms. It consists of ironphosphate layers, in the ac plane, with the interlayer space filled by K⁺ cations, as illustrated in the perspective view parallel to the [100] direction shown in Fig. 1. There are two iron-phosphate layers within the repeat distance b; each layer lies on a medium plane perpendicular to the b axis at $y = \frac{1}{4}$ and $y = \frac{3}{4}$. The layers are formed by corner-sharing FeO₆ octahedra, which are further connected by phosphate tetrahedra through corner- and edge-sharing. The mode of association connecting the iron octahedra and the phosphorus tetrahedra in layers is indicated in Fig. 2. Each Fe1O₆ octahedron shares a first corner with, simultaneously, one Fe2O₆ octahedron and one P1O₄ tetrahedron, a second corner with, simultaneously, one Fe3O₆ octahedron and one P2O₄ tetrahedron, and finally a third corner with a $P3O_4$ tetrahedron. The $P1O_4$ and $P2O_4$ tetrahedra share one edge, respectively, with Fe2O₆ and Fe3O₆ octahedra, and share corners of the common edge with two different Fe1O₆ octahedra. The remaining corners are coordinated to two $Fe3O_6$ octahedra in the case of P1O₄, and two Fe2O₆ octahedra in the case of P2O₄. P3O₄ coordinates to Fe atoms (Fe1, Fe2 and Fe3) through three O atoms. The distortion observed in the Fe2O₆ and Fe3O₆ octahedra and in the P1O₄ and P2O₄ tetrahedra is a result of the edge-sharing between these polyhedra, since the existence of the common

Figure 2 The association mode of iron and phosphorus polyhedra in layers.

edge induces a strong repulsion between the positive charges carried by the Fe and P atoms, and consequently atoms Fe2, Fe3, P1 and P2 are forced to shift to off-centred positions within their respective polyhedra and the lengths of the common edges are shorter than the other $O \cdots O$ distances in order to efficiently screen this repulsion effect. It is of interest to note that atoms O31, O32 and O34 all bond to P and only one Fe atom, whereas atoms O11, O12, O21 and O22 bond to P and two Fe atoms. Thus, the Fe–O bonds are weaker when the O atom bonds to two Fe atoms, as one would expect. The sharing of edges also affects the geometry, but this may only be possible because the Fe–O bonds are already longer. Fig. 3 shows the atomic displacement ellipsoids connected in layers.

The structural arrangement adopted by the first building block is similar to that observed in the $K_3Fe_3(PO_4)_4$ ·H₂O structure (Lii, 1995), which is made up of layers involving corner-linkage between FeO₆ octahedra, and corner- and edge-sharing between FeO₆ octahedra and PO₄ tetrahedra. The layers are linked by seven- or six-oxygen-coordinated K⁺ cations and hydrogen bonding.

The second building block, formed by Fe4 and P4O₄ tetrahedra, is found in the interlayer space between the first building blocks, which has the result of destroying the layered arrangement. Atom Fe4 is pentacoordinated and shares its corners with one P3O₄ and four different P4O₄ tetrahedra. Fe4O₅ polyhedra are connected to each other and to the other iron octahedra by phosphate tetrahedra *via* corner-sharing. The average Fe4–O distance is 1.941 Å, a value close to that observed in K₃Fe₂(PO₄)₃ for pentacoordinated iron (1.935 Å; Pintard-Scrépel *et al.*, 1983). Each P4O₄ tetrahedron shares its four corners with four different Fe4O₅ polyhedra.

The three-dimensional structural arrangement formed by the P, Fe and O atoms contains interstitial spaces forming intersecting channels in which K atoms are located. K1 has an

Figure 3

The connectivity of atoms in layers, shown with 50% probability displacement ellipsoids.

environment formed by eight O atoms, with K–O distances ranging from 2.587 (2) to 3.213 (2) Å, while K2 is six-coordinated, with K–O distances between 2.8830 (18) and 3.0257 (15) Å (Table 1). The coordination number of each K⁺ cation was determined on the basis of the maximum cationanion distance; $L_{\text{max}} = 3.35$ Å for K–O according to Donnay & Allman (1970).

Experimental

Crystals of $K_3Fe_5(PO_4)_6$ were prepared by the flux method from K_2CO_3 , $(NH_4)_2HPO_4$, MoO_3 and $Fe(NO_3)_3\cdot 9H_2O$. The starting materials (equimolar ratio) were placed in a platinum crucible (in air) and heated at 1073 K for 1 h. The mixture was cooled to 773 K at a rate of 10 K h⁻¹. Finally, parallelepiped-shaped brown crystals of $K_3Fe_5(PO_4)_6$ were obtained after washing the mixture with boiling water.

Table 1		
Selected geometric parameters	(Å,	°).

Fe1-O34 ⁱ	1.9544 (12)	P3-O32	1.5220 (13)
Fe1-O12 ⁱ	2.0351 (14)	P3-O34	1.5302 (12)
Fe1-O21	2.0376 (14)	P3-O31	1.5387 (13)
Fe2-O31	1.9289 (12)	P4-O42	1.5220 (14)
Fe2-O22 ⁱⁱ	2.0312 (16)	P4-O43	1.5310 (14)
Fe2-O12 ⁱⁱⁱ	2.0987 (12)	P4-O44	1.5366 (13)
Fe3-O32	1.8977 (12)	P4-O41	1.5380 (13)
Fe3-O11 ^{iv}	2.0293 (16)	K1-O32 ^{viii}	2.5870 (19)
Fe3-O21 ^v	2.0859 (12)	K1-O33	2.6045 (18)
Fe4-O44 ^{vi}	1.8736 (13)	K1-O31 ^{viii}	2.757 (2)
Fe4-O41	1.8867 (12)	K1-O34	2.7579 (17)
Fe4-O33	1.9273 (12)	$K1 - O42^{vii}$	2.7867 (15)
Fe4-O42 ^{vii}	1.9992 (17)	$K1 - O11^{ix}$	2.8746 (13)
Fe4-O43 ^v	2.0173 (17)	$K1 - O22^x$	2,9934 (13)
P1-011	15105(13)	$K1 - O43^{vii}$	3 2132 (16)
P1 - O12	1 5756 (11)	$K_{2}=044^{xi}$	2,8830 (18)
$P_{2}=0.02^{v}$	1 5158 (13)	$K_2 = 041^{xi}$	2 9890 (16)
$P_{2} = 022$	1.5150(15) 1.5772(11)	$K_2 = 0.31^{xii}$	3 0257 (15)
P3_033	1.5772(11) 1.5193(12)	M2 0001	5.0257 (15)
15 055	1.51)5 (12)		
O34 ⁱ -Fe1-O12 ⁱ	90.92 (5)	O44vi-Fe4-O42vii	95.42 (7)
O34-Fe1-O12i	89.08 (5)	O41-Fe4-O42vii	92.22 (6)
O34 ⁱ -Fe1-O21	85.42 (5)	O33-Fe4-O42 ^{vii}	82.67 (5)
O34-Fe1-O21	94.58 (5)	$O44^{vi}$ -Fe4-O43 ^v	91.83 (7)
$O12^{i} - Fe1 - O21$	84.99 (6)	$O41 - Fe4 - O43^{v}$	90.22 (7)
O12 - Fe1 - O21	95.01 (6)	O_{33} -Fe4- O_{43}^{v}	89.08 (5)
$O31 - Fe^2 - O31^{iii}$	94 31 (7)	$O42^{vii}$ - Fe4 - O43 ^v	170 10 (6)
$O_{31} - Fe_{2} - O_{22}^{ii}$	87 33 (6)	$011 - P1 - 011^{iii}$	111 48 (10)
$O31^{iii}$ -Fe2- $O22^{ii}$	94 41 (6)	011 - P1 - 012	112.32 (7)
Ω_{22}^{ii} = Fe ² = Ω_{22}^{ii}	177 45 (6)	$011^{iii} - P1 - 012$	110.93(7)
$O_{22} = Fe_2 = O_{12}^{iii}$	16643(5)	$012 - P1 - 012^{iii}$	98 24 (9)
031^{iii} - Fe ² - 012^{iii}	98 49 (5)	$02^{v} - P^{2} - 022$	111.89 (10)
0.02^{ii} = Fe2 = 0.12^{iii}	87.20(5)	$O_{22}^{v} - P_{2}^{v} - O_{21}^{v}$	110.59 (6)
$O22^{i}$ Fe2 $O12^{ii}$	90.70 (5)	$O_{22}^{2} = P_{2}^{2} = O_{21}^{21}$	11254(7)
0.12^{iii} Fe ² -0.12	69.17 (6)	$O_{21} = P_{2} = O_{21}^{v}$	97.97(9)
$O_{12} = Fe_{2} = O_{12}$ $O_{32} = Fe_{3} = O_{32}^{v}$	98.84 (8)	$O_{21} = P_{2} = O_{21}$ $O_{33} = P_{3} = O_{32}$	110.52(7)
$O_{32} = F_{e3} = O_{11}^{iv}$	90.04 (0) 85.58 (6)	O33 P3 O34	110.32(7) 100.20(7)
O_{32}^{v} Ee3 O_{11}^{iv}	95.63 (6)	O_{32} P3 O_{34}	109.29(7) 109.54(7)
$O_{32} = I_{C3} = O_{11}^{iv}$ $O_{11}^{iv} = E_{22} = O_{11}^{ii}$	178 15 (7)	$O_{32} = P_{3} = O_{34}$	109.34(7) 108.20(7)
011 - 163 - 011	1/0.13(7) 162.62(5)	033 = 13 = 031	108.39(7)
$0.32 - Fe_{3} - 0.21$	105.02(5)	O_{24} P2 O_{21}	100.00(0) 110.28(7)
$O_{32} = Fe_{3} = O_{21}^{v}$	90.20 (3)	$0.34 - F_3 - 0.51$	110.20(7) 109.11(9)
$O_{11}^{i} = Fe_{2}^{i} = O_{21}^{v}$	80.08(3)	042 - P4 - 043 042 - P4 - 044	108.11(8) 11152(9)
$O_{11} = Fe_3 = O_{21}^{V}$	91.81 (3) 60.57 (6)	042 - r4 - 044 042 P4 044	111.33 (8)
$O_{21} - Fe_{3} - O_{21}$	09.37 (0)	043-P4-044	109.92 (8)
$O_{44} = Fe4 = O41$	118.01(0) 102.56(6)	042-P4-041	111.30 (8)
044 -Fe4-033	103.56 (6)	043-P4-041	111.95 (8)
O41 - Fe4 - O33	137.82 (6)	044-P4-041	103.96 (7)

Symmetry codes: (i) $\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$; (ii) $x - \frac{1}{2}, \frac{1}{2} - y, z - \frac{1}{2}$; (iii) $-x, y, \frac{1}{2} - z$; (iv) $x - \frac{1}{2}, \frac{1}{2} - y, \frac{1}{2} + z$; (v) $-x, y, \frac{3}{2} - z$; (vi) $x, -y, z - \frac{1}{2}$; (vii) $1 - x, y, \frac{3}{2} - z$; (viii) 1 + x, y, z; (ix) $\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z$; (x) $\frac{1}{2} + x, \frac{1}{2} - y, z - \frac{1}{2}$; (xi) x, 1 + y, z; (xii) -x, 1 - y, 1 - z.

inorganic compounds

Crystal data

 $\begin{array}{l} K_{3}Fe_{5}(PO_{4})_{6} \\ M_{r} = 966.37 \\ Monoclinic, C2/c \\ a = 6.460 (4) Å \\ b = 30.997 (7) Å \\ c = 10.665 (2) Å \\ \beta = 90.22 (4)^{\circ} \\ V = 2135.6 (15) Å^{3} \\ Z = 4 \\ D_{x} = 3.006 \text{ Mg m}^{-3} \end{array}$

Data collection

Enraf–Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: analytical (Katayama, 1986) $T_{min} = 0.630, T_{max} = 0.710$ 7763 measured reflections 3823 independent reflections 3354 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.051$ S = 1.083823 reflections 177 parameters $D_m = 3.05 (5) \text{ Mg m}^{-3}$ $D_m \text{ measured by pycnometry}$ Ag K\$\alpha\$ radiation Cell parameters from 25 reflections \$\theta\$ = 7-12° \$\mu\$ = 2.30 mm^{-1}\$ \$T\$ = 293 (2) K Parallelepiped, brown 0.30 × 0.20 × 0.16 mm

 $R_{int} = 0.030$ $\theta_{max} = 25.0^{\circ}$ $h = -9 \rightarrow 9$ $k = -46 \rightarrow 9$ $l = -16 \rightarrow 16$ 2 standard reflections frequency: 120 min intensity decay: 2%

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0214P)^2 \\ &+ 4.5065P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{max} = 0.001 \\ \Delta\rho_{max} = 0.76 \ e^{\Lambda^{-3}} \\ \Delta\rho_{min} = -0.79 \ e^{\Lambda^{-3}} \\ Extinction \ correction: \ SHELXL97 \\ Extinction \ coefficient: \ 0.00198 \ (13) \end{split}$$

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SIR*92 (Altomare

et al., 1993); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ATOMS* (Dowty, 1994); software used to prepare material for publication: *SHELXL*97.

The authors thank Professor M. Rzeigui at the 'F. S. Bizerte, 7021 Jarzouna, Tunisia' for performing the single-crystal X-ray diffraction measurements.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1386). Services for accessing these data are described at the back of the journal.

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Andrew-Allen, E. M. & Robinson, W. R. (1988). J. Solid State Chem. 74, 88-97.
- Attali, S., Vigouroux, B., Lenzi, M. & Persia, J. (1980). J. Catal. 63, 496–500.
 Belkhiria, M. S., Laaribi, S., Ben Hadj Amara, A. & Ben Amara, M. (1998).
 Ann. Chem. Sci. Mater. 23, 117–120.
- Donnay, G. & Allman, R. (1970). Am. Mineral. 55, 1003.
- Dowty, E. (1994). ATOMS. Version 3.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Katayama, C. (1986). Acta Cryst. A42, 19–23.

- Lii, K. H. (1995). Eur. J. Solid State Inorg. Chem. 32, 917-926.
- Meisel, W., Guttmann, H. J. & Gütlich, P. (1983). Corr. Sci. 23, 1373-1379.
- Moffat, J. B. (1978). Catal. Rev. Sci. Eng. 18, 199-258.
- Ng, H. N. & Calvo, C. (1975). Can. J. Chem. 53, 2064-2067.
- Pintard-Scrépel, M., d'Yvoire, F. & Durand, J. (1983). Acta Cryst. C39, 9-12.
- Pintard-Scrépel, M., d'Yvoire, F. & Remy, F. (1978). C. R. Acad. Sci. Ser. C, 286, 381–383.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.