Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

The iron phosphate $\mathrm{K}_{3} \mathrm{Fe}_{5}\left(\mathrm{PO}_{4}\right)_{6}$

Besma Lajmi,* Mourad Hidouri and Mongi Ben Amara

Département de Chimie, Faculté des Sciences, 5000 Monastir, Tunisia Correspondence e-mail: besma. lajmi@fsm.rnu.tn

Received 9 July 2002
Accepted 23 August 2002
Online 22 October 2002
The crystal structure of tripotassium pentairon hexaphosphate has been determined by single-crystal X-ray diffraction. The structure contains one Fe atom on a center of symmetry, one K , two Fe and two P atoms on twofold axes, and one Fe , two P and one K atom in general positions. The $\mathrm{K}_{3} \mathrm{Fe}_{5}\left(\mathrm{PO}_{4}\right)_{6}$ structure consists of a complex three-dimensional framework of corner-sharing between iron polyhedra, and corner- and edge-sharing between PO_{4} tetrahedra and iron polyhedra (FeO_{5} and FeO_{6}). This linkage between iron and phosphorus forms intersecting channels containing the K atoms.

Comment

Iron phosphates generate considerable interest not only because of their magnetic properties, due to the great number of possible different cation arrangements, but also because of their potential practical applications, including corrosion inhibition (Meisel et al., 1983), passivation of metal surfaces (Attali et al., 1980) and heterogeneous catalysis (Moffat, 1978). These materials offer a considerable number of complex and versatile network structures due to the ability of iron to be in both the +2 and +3 oxidation states, and to adopt various coordination environments. In the monophosphates, iron(III) coordinates, in most cases, to six O atoms and rarely to five O atoms (Belkhiria et al., 1998; Pintard-Scrépel et al., 1978; Andrew-Allen \& Robinson, 1988). It is four-coordinated in a few cases, such as in FePO_{4} ($\mathrm{Ng} \&$ Calvo, 1975). Moreover, it can exhibit two different coordination modes in the same structure, such as in $\mathrm{K}_{3} \mathrm{Fe}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ (Pintard-Scrépel et al., 1983) and $\mathrm{Cs}_{7} \mathrm{Fe}_{7}\left(\mathrm{PO}_{4}\right)_{8} \mathrm{O}_{2}$ (Andrew-Allen \& Robinson, 1988), in which iron(III) adopts five- and six-coordination. The potassium iron phosphate $\mathrm{K}_{3} \mathrm{Fe}_{5}\left(\mathrm{PO}_{4}\right)_{6}$, reported in this paper, falls into the latter category of compounds.

Fig. 1 illustrates the complete crystal structure of $\mathrm{K}_{3} \mathrm{Fe}_{5}\left(\mathrm{PO}_{4}\right)_{6}$ projected along the [100] direction. There are four crystallographically distinct Fe atoms in this structure. Fe 1 is located on a center of symmetry, Fe 2 and Fe 3 lie on twofold axes and Fe 4 is located in a general position. The Fe atoms are both five- and six-coordinated. Atoms P1, P2 and K 2 lie on twofold axes, while atoms P3, P4 and K1 are in general positions. The $\mathrm{K}_{3} \mathrm{Fe}_{5}\left(\mathrm{PO}_{4}\right)_{6}$ structure consists of a three-dimensional complex framework constructed of either

Figure 1
A projection of the structural network of $\mathrm{K}_{3} \mathrm{Fe}_{5}\left(\mathrm{PO}_{4}\right)_{6}$ along the [100] direction.
iron polyhedra connected to each other by corner-linkage or phosphate tetrahedra connected via corner- and edge-sharing. The structure can be easily described as the association of two building blocks. The first gathers $\mathrm{Fe} 1, \mathrm{Fe} 2$ and Fe 3 octahedra, $\mathrm{P} 1, \mathrm{P} 2$ and P3 tetrahedra, and K atoms. It consists of ironphosphate layers, in the ac plane, with the interlayer space filled by K^{+}cations, as illustrated in the perspective view parallel to the [100] direction shown in Fig. 1. There are two iron-phosphate layers within the repeat distance b; each layer lies on a medium plane perpendicular to the b axis at $y=\frac{1}{4}$ and $y=\frac{3}{4}$. The layers are formed by corner-sharing FeO_{6} octahedra, which are further connected by phosphate tetrahedra through corner- and edge-sharing. The mode of association connecting the iron octahedra and the phosphorus tetrahedra in layers is indicated in Fig. 2. Each $\mathrm{Fe}_{1} \mathrm{O}_{6}$ octahedron shares a first corner with, simultaneously, one $\mathrm{Fe} 2 \mathrm{O}_{6}$ octahedron and one $\mathrm{P1O}_{4}$ tetrahedron, a second corner with, simultaneously, one $\mathrm{Fe} 3 \mathrm{O}_{6}$ octahedron and one $\mathrm{P}_{2} \mathrm{O}_{4}$ tetrahedron, and finally a third corner with a $\mathrm{P}_{3} \mathrm{O}_{4}$ tetrahedron. The ${\mathrm{P} 1 \mathrm{O}_{4}}$ and $\mathrm{P} 2 \mathrm{O}_{4}$ tetrahedra share one edge, respectively, with $\mathrm{Fe}_{2} \mathrm{O}_{6}$ and $\mathrm{Fe} 3 \mathrm{O}_{6}$ octahedra, and share corners of the common edge with two different $\mathrm{Fe}^{1} \mathrm{O}_{6}$ octahedra. The remaining corners are coordinated to two $\mathrm{Fe}_{3} \mathrm{O}_{6}$ octahedra in the case of $\mathrm{P}_{1} \mathrm{O}_{4}$, and two $\mathrm{Fe} 2 \mathrm{O}_{6}$ octahedra in the case of $\mathrm{P}_{2} \mathrm{O}_{4} .{\mathrm{P} 3 \mathrm{O}_{4} \text { coordinates to } \mathrm{Fe}}^{2}$ atoms ($\mathrm{Fe} 1, \mathrm{Fe} 2$ and Fe 3) through three O atoms. The distortion observed in the $\mathrm{Fe}_{2} \mathrm{O}_{6}$ and $\mathrm{Fe} 3 \mathrm{O}_{6}$ octahedra and in the $\mathrm{P}_{1} \mathrm{O}_{4}$ and $\mathrm{P}_{2} \mathrm{O}_{4}$ tetrahedra is a result of the edge-sharing between these polyhedra, since the existence of the common

Figure 2
The association mode of iron and phosphorus polyhedra in layers.
edge induces a strong repulsion between the positive charges carried by the Fe and P atoms, and consequently atoms Fe 2 , Fe3, P1 and P2 are forced to shift to off-centred positions within their respective polyhedra and the lengths of the common edges are shorter than the other $\mathrm{O} \cdots \mathrm{O}$ distances in order to efficiently screen this repulsion effect. It is of interest to note that atoms O31, O32 and O34 all bond to P and only one Fe atom, whereas atoms $\mathrm{O} 11, \mathrm{O} 12, \mathrm{O} 21$ and O 22 bond to P and two Fe atoms. Thus, the $\mathrm{Fe}-\mathrm{O}$ bonds are weaker when the O atom bonds to two Fe atoms, as one would expect. The sharing of edges also affects the geometry, but this may only be possible because the $\mathrm{Fe}-\mathrm{O}$ bonds are already longer. Fig. 3 shows the atomic displacement ellipsoids connected in layers.

The structural arrangement adopted by the first building block is similar to that observed in the $\mathrm{K}_{3} \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ structure (Lii, 1995), which is made up of layers involving corner-linkage between FeO_{6} octahedra, and corner- and edge-sharing between FeO_{6} octahedra and PO_{4} tetrahedra. The layers are linked by seven- or six-oxygen-coordinated K^{+} cations and hydrogen bonding.

The second building block, formed by Fe 4 and $\mathrm{P}_{4} \mathrm{O}_{4}$ tetrahedra, is found in the interlayer space between the first building blocks, which has the result of destroying the layered arrangement. Atom Fe 4 is pentacoordinated and shares its corners with one $\mathrm{P}_{3} \mathrm{O}_{4}$ and four different $\mathrm{P}_{4} \mathrm{O}_{4}$ tetrahedra. $\mathrm{Fe} 4 \mathrm{O}_{5}$ polyhedra are connected to each other and to the other iron octahedra by phosphate tetrahedra via corner-sharing. The average $\mathrm{Fe} 4-\mathrm{O}$ distance is $1.941 \AA$, a value close to that observed in $\mathrm{K}_{3} \mathrm{Fe}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ for pentacoordinated iron (1.935 \AA; Pintard-Scrépel et al., 1983). Each ${\mathrm{P} 4 \mathrm{O}_{4}}^{\text {tetrahedron shares its }}$ four corners with four different $\mathrm{Fe}_{4} \mathrm{O}_{5}$ polyhedra.

The three-dimensional structural arrangement formed by the P, Fe and O atoms contains interstitial spaces forming intersecting channels in which K atoms are located. K1 has an

Figure 3
The connectivity of atoms in layers, shown with 50% probability displacement ellipsoids.
environment formed by eight O atoms, with $\mathrm{K}-\mathrm{O}$ distances ranging from 2.587 (2) to 3.213 (2) \AA, while K2 is six-coordinated, with $\mathrm{K}-\mathrm{O}$ distances between 2.8830 (18) and 3.0257 (15) Å (Table 1). The coordination number of each K^{+} cation was determined on the basis of the maximum cationanion distance; $L_{\text {max }}=3.35 \AA$ for $\mathrm{K}-\mathrm{O}$ according to Donnay \& Allman (1970).

Experimental

Crystals of $\mathrm{K}_{3} \mathrm{Fe}_{5}\left(\mathrm{PO}_{4}\right)_{6}$ were prepared by the flux method from $\mathrm{K}_{2} \mathrm{CO}_{3},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}, \mathrm{MoO}_{3}$ and $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$. The starting materials (equimolar ratio) were placed in a platinum crucible (in air) and heated at 1073 K for 1 h . The mixture was cooled to 773 K at a rate of $10 \mathrm{~K} \mathrm{~h}^{-1}$. Finally, parallelepiped-shaped brown crystals of $\mathrm{K}_{3} \mathrm{Fe}_{5}\left(\mathrm{PO}_{4}\right)_{6}$ were obtained after washing the mixture with boiling water.

Table 1
Selected geometric parameters ($\AA^{\circ},{ }^{\circ}$).

Fe1-O34 ${ }^{\text {i }}$	1.9544 (12)	P3-O32	1.5220 (13)
Fe1-O12 ${ }^{\text {i }}$	2.0351 (14)	P3-O34	1.5302 (12)
Fe1-O21	2.0376 (14)	P3-O31	1.5387 (13)
$\mathrm{Fe} 2-\mathrm{O} 31$	1.9289 (12)	P4-O42	1.5220 (14)
$\mathrm{Fe} 2-\mathrm{O} 22^{\text {ii }}$	2.0312 (16)	$\mathrm{P} 4-\mathrm{O} 43$	1.5310 (14)
$\mathrm{Fe} 2-\mathrm{O} 12{ }^{\text {iii }}$	2.0987 (12)	P4-O44	1.5366 (13)
$\mathrm{Fe} 3-\mathrm{O} 32$	1.8977 (12)	P4-O41	1.5380 (13)
$\mathrm{Fe} 3-\mathrm{O} 11^{\text {iv }}$	2.0293 (16)	$\mathrm{K} 1-\mathrm{O} 32{ }^{\text {viii }}$	2.5870 (19)
$\mathrm{Fe} 3-\mathrm{O} 21{ }^{\text {v }}$	2.0859 (12)	K1-O33	2.6045 (18)
$\mathrm{Fe} 4-\mathrm{O} 44^{\text {vi }}$	1.8736 (13)	K1-O31 ${ }^{\text {viii }}$	2.757 (2)
Fe4-O41	1.8867 (12)	K1-O34	2.7579 (17)
Fe4-O33	1.9273 (12)	$\mathrm{K} 1-\mathrm{O} 42^{\text {vii }}$	2.7867 (15)
$\mathrm{Fe} 4-\mathrm{O} 42^{\text {vii }}$	1.9992 (17)	$\mathrm{K} 1-\mathrm{O} 11^{\text {ix }}$	2.8746 (13)
$\mathrm{Fe} 4-\mathrm{O} 43^{\text {v }}$	2.0173 (17)	$\mathrm{K} 1-\mathrm{O} 22^{\mathrm{x}}$	2.9934 (13)
P1-O11	1.5105 (13)	$\mathrm{K} 1-\mathrm{O} 43^{\text {vii }}$	3.2132 (16)
$\mathrm{P} 1-\mathrm{O} 12$	1.5756 (11)	$\mathrm{K} 2-\mathrm{O} 44^{\text {xi }}$	2.8830 (18)
$\mathrm{P} 2-\mathrm{O} 22^{\text {v }}$	1.5158 (13)	$\mathrm{K} 2-\mathrm{O} 41^{\text {xi }}$	2.9890 (16)
P2-O21	1.5772 (11)	K2-O31 ${ }^{\text {xii }}$	3.0257 (15)
P3-O33	1.5193 (12)		
$\mathrm{O} 34{ }^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{O} 12{ }^{\text {i }}$	90.92 (5)	$\mathrm{O} 44^{\text {vi }}-\mathrm{Fe} 4-\mathrm{O} 42^{\text {vii }}$	95.42 (7)
$\mathrm{O} 34-\mathrm{Fe} 1-\mathrm{O} 12^{\text {i }}$	89.08 (5)	O41-Fe4-O42 ${ }^{\text {vii }}$	92.22 (6)
$\mathrm{O} 34{ }^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{O} 21$	85.42 (5)	$\mathrm{O} 33-\mathrm{Fe} 4-\mathrm{O} 42^{\text {vii }}$	82.67 (5)
$\mathrm{O} 34-\mathrm{Fe} 1-\mathrm{O} 21$	94.58 (5)	$\mathrm{O} 44^{\text {vi }}-\mathrm{Fe} 4-\mathrm{O} 43^{\mathrm{v}}$	91.83 (7)
$\mathrm{O} 12-\mathrm{Fe} 1-\mathrm{O} 21$	84.99 (6)	$\mathrm{O} 41-\mathrm{Fe} 4-\mathrm{O} 43^{\text {v }}$	90.22 (7)
$\mathrm{O} 12-\mathrm{Fe} 1-\mathrm{O} 21$	95.01 (6)	$\mathrm{O} 33-\mathrm{Fe} 4-\mathrm{O} 43^{v}$	89.08 (5)
$\mathrm{O} 31-\mathrm{Fe} 2-\mathrm{O} 31^{\text {iii }}$	94.31 (7)	$\mathrm{O} 42^{\text {vii }}-\mathrm{Fe} 4-\mathrm{O} 43^{\mathrm{v}}$	170.10 (6)
$\mathrm{O} 31-\mathrm{Fe} 2-\mathrm{O} 22^{\text {ii }}$	87.33 (6)	O11-P1-O11 ${ }^{\text {iii }}$	111.48 (10)
$\mathrm{O} 31^{\text {iii }}-\mathrm{Fe} 2-\mathrm{O} 22^{\text {ii }}$	94.41 (6)	$\mathrm{O} 11-\mathrm{P} 1-\mathrm{O} 12$	112.32 (7)
$\mathrm{O} 22^{\mathrm{ii}}-\mathrm{Fe} 2-\mathrm{O} 22^{\text {i }}$	177.45 (6)	$\mathrm{O} 11^{\text {iii }}-\mathrm{P} 1-\mathrm{O} 12$	110.93 (7)
$\mathrm{O} 31-\mathrm{Fe} 2-\mathrm{O} 12{ }^{\text {iii }}$	166.43 (5)	$\mathrm{O} 12-\mathrm{P} 1-\mathrm{O} 12{ }^{\text {iii }}$	98.24 (9)
$\mathrm{O} 31^{\text {iii }}-\mathrm{Fe} 2-\mathrm{O} 12{ }^{\text {iiii }}$	98.49 (5)	$\mathrm{O} 22^{\mathrm{v}}-\mathrm{P} 2-\mathrm{O} 22$	111.89 (10)
$\mathrm{O} 22^{\mathrm{ii}}-\mathrm{Fe} 2-\mathrm{O} 12^{\text {iii }}$	87.20 (5)	$\mathrm{O} 22^{\mathrm{v}}-\mathrm{P} 2-\mathrm{O} 21$	110.59 (6)
$\mathrm{O} 22^{\mathrm{i}}-\mathrm{Fe} 2-\mathrm{O} 12^{\text {iii }}$	90.70 (5)	$\mathrm{O} 22-\mathrm{P} 2-\mathrm{O} 21$	112.54 (7)
$\mathrm{O} 122^{\text {iii }}-\mathrm{Fe} 2-\mathrm{O} 12$	69.17 (6)	$\mathrm{O} 21-\mathrm{P} 2-\mathrm{O} 21^{v}$	97.97 (9)
$\mathrm{O} 32-\mathrm{Fe} 3-\mathrm{O} 32^{\text {v }}$	98.84 (8)	$\mathrm{O} 33-\mathrm{P} 3-\mathrm{O} 32$	110.52 (7)
$\mathrm{O} 32-\mathrm{Fe} 3-\mathrm{O} 11^{\text {iv }}$	85.58 (6)	O33-P3-O34	109.29 (7)
$\mathrm{O} 32{ }^{\text {v }}-\mathrm{Fe} 3-\mathrm{O} 11^{\text {iv }}$	95.63 (6)	O32-P3-O34	109.54 (7)
$\mathrm{O} 11^{\text {iv }}-\mathrm{Fe} 3-\mathrm{O} 11^{\text {i }}$	178.15 (7)	O33-P3-O31	108.39 (7)
$\mathrm{O} 32-\mathrm{Fe} 3-\mathrm{O} 21^{\text {v }}$	163.62 (5)	O32-P3-O31	108.80 (8)
$\mathrm{O} 32^{v}-\mathrm{Fe} 3-\mathrm{O} 21^{v}$	96.26 (5)	O34-P3-O31	110.28 (7)
$\mathrm{O} 11^{\text {iv }}-\mathrm{Fe} 3-\mathrm{O} 21^{\text {v }}$	86.68 (5)	O42-P4-O43	108.11 (8)
$\mathrm{O} 11^{\mathrm{i}}-\mathrm{Fe} 3-\mathrm{O} 21^{\mathrm{v}}$	91.81 (5)	O42-P4-O44	111.53 (8)
$\mathrm{O} 21{ }^{\mathrm{v}}-\mathrm{Fe} 3-\mathrm{O} 21$	69.57 (6)	$\mathrm{O} 43-\mathrm{P} 4-\mathrm{O} 44$	109.92 (8)
$\mathrm{O} 44^{\text {vi }}-\mathrm{Fe} 4-\mathrm{O} 41$	118.61 (6)	O42-P4-O41	111.36 (8)
$\mathrm{O} 44^{\text {vi }}-\mathrm{Fe} 4-\mathrm{O} 33$	103.56 (6)	O43-P4-O41	111.95 (8)
$\mathrm{O} 41-\mathrm{Fe} 4-\mathrm{O} 33$	137.82 (6)	O44-P4-O41	103.96 (7)

Symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$; (ii) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$; (iii) $-x, y, \frac{1}{2}-z$; (iv) $x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z$; (v) $-x, y, \frac{3}{2}-z$; (vi) $x,-y, z-\frac{1}{2} ;$ (vii) $1-x, y, \frac{3}{2}-z$; (viii) $1+x, y, z$; (ix) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$; (x) $\frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2}$; (xi) $x, 1+y, z$; (xii) $-x, 1-y, 1-z$.

inorganic compounds

Crystal data

$\mathrm{K}_{3} \mathrm{Fe}_{5}\left(\mathrm{PO}_{4}\right)_{6}$
$M_{r}=966.37$
Monoclinic, C2/c
$a=6.460$ (4) \AA
$b=30.997$ (7) \AA
$c=10.665$ (2) A
$\beta=90.22(4)^{\circ}$
$V=2135.6(15) \AA^{3}$
$Z=4$
$D_{x}=3.006 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: analytical (Katayama, 1986)
$T_{\text {min }}=0.630, T_{\text {max }}=0.710$
7763 measured reflections
3823 independent reflections
3354 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.051$
$S=1.08$
3823 reflections
177 parameters

```
\(D_{m}=3.05(5) \mathrm{Mg} \mathrm{m}^{-3}\)
\(D_{m}\) measured by pycnometry
\(\mathrm{Ag} K \alpha\) radiation
Cell parameters from 25
        reflections
\(\theta=7-12^{\circ}\)
\(\mu=2.30 \mathrm{~mm}^{-1}\)
\(T=293\) (2) K
Parallelepiped, brown
\(0.30 \times 0.20 \times 0.16 \mathrm{~mm}\)
```

$R_{\text {int }}=0.030$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-46 \rightarrow 9$
$l=-16 \rightarrow 16$
2 standard reflections
frequency: 120 min
intensity decay: 2%

$$
\begin{aligned}
& \begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0214 P)^{2}\right. \\
& \quad+4.5065 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.76 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.79 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.00198
\end{aligned} \text { (13) }
\end{aligned}
$$

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare
et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 1994); software used to prepare material for publication: SHELXL97.

The authors thank Professor M. Rzeigui at the 'F. S. Bizerte, 7021 Jarzouna, Tunisia' for performing the single-crystal X-ray diffraction measurements.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1386). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Andrew-Allen, E. M. \& Robinson, W. R. (1988). J. Solid State Chem. 74, 88-97.
Attali, S., Vigouroux, B., Lenzi, M. \& Persia, J. (1980). J. Catal. 63, 496-500.
Belkhiria, M. S., Laaribi, S., Ben Hadj Amara, A. \& Ben Amara, M. (1998). Ann. Chem. Sci. Mater. 23, 117-120.
Donnay, G. \& Allman, R. (1970). Am. Mineral. 55, 1003.
Dowty, E. (1994). ATOMS. Version 3.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Katayama, C. (1986). Acta Cryst. A42, 19-23.
Lii, K. H. (1995). Eur. J. Solid State Inorg. Chem. 32, 917-926.
Meisel, W., Guttmann, H. J. \& Gütlich, P. (1983). Corr. Sci. 23, 1373-1379.
Moffat, J. B. (1978). Catal. Rev. Sci. Eng. 18, 199-258.
Ng, H. N. \& Calvo, C. (1975). Can. J. Chem. 53, 2064-2067.
Pintard-Scrépel, M., d'Yvoire, F. \& Durand, J. (1983). Acta Cryst. C39, 9-12.
Pintard-Scrépel, M., d’Yvoire, F. \& Remy, F. (1978). C. R. Acad. Sci. Ser. C, 286, 381-383.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

